已知A是三角形ABC的内角,且sinA+cosA=1⼀5,求tanA的值

2025-02-23 20:36:17
推荐回答(1个)
回答1:

由sinA+cosA=1/5 A
sin^2A+cos^2A=1得
sinA*cosA=-12/250
2tan(A/2)/(1+tan^2(A/2))+(1-tan^2(A/2))/(1+tan^2(A/2))=1/5
解得:
tan(A/2)=2或-1/4(舍去)
将tan(A/2)=2代入
tanA=2tan(A/2)/(1-tan(A/2)^2)
=-4/3