(p→r)∧(q→¬r)∧(¬r→(p∨q))
⇔ (¬p∨r)∧(¬q∨¬r)∧(r∨(p∨q)) 变成 合取析取⇔ (¬p∨r)∧(¬q∨¬r)∧(r∨p∨q) 结合律⇔ (¬p∨(¬q∧q)∨r)∧((¬p∧p)∨¬q∨¬r)∧(p∨q∨r) 补项⇔ ((¬p∨¬q∨r)∧(¬p∨q∨r))∧((¬p∧p)∨¬q∨¬r)∧(p∨q∨r) 分配律⇔ (¬p∨¬q∨r)∧(¬p∨q∨r)∧((¬悔答渗p∧p)∨¬q∨¬r)∧(p∨q∨r) 结合律⇔ (¬p∨¬q∨r)∧(¬p∨q∨r)∧((¬p∨¬q∨¬r)∧(p∨¬q∨¬r))∧(p∨q∨r) 分配律⇔ (¬p∨¬q∨举蚂r)∧(¬p∨q∨r)∧(¬p∨¬q∨¬r)∧(p∨¬q∨¬r)∧(p∨q∨r) 结合律得到主合取范式,
得到主析取范式