首页
13问答网
>
若方阵A满足-3A^2+3A-5E=0,证明A与A-2E可逆并且求它们的逆矩阵
若方阵A满足-3A^2+3A-5E=0,证明A与A-2E可逆并且求它们的逆矩阵
2025-04-28 18:04:25
推荐回答(1个)
回答1:
3A(A-E)=-5E,因此A可逆,A^(-1)=(E-A)/5
-3(A-2E)(A+E)=11E,因此A-2E可逆,(A-2E)^(-1)=-3(A+E)/11
相关问答
最新问答
请问从长沙火车站到星沙漓湘中路怎样走?
奥奇传说命运神·女帝怎么打 打法攻略
如何有效的组织幼儿户外活动
椅子垫子有什么材质 如何挑选椅子
海口鼎方实业有限公司怎么样?
音の舞注册过商标吗?还有哪些分类可以注册?
南京东久建设工程有限公司怎么样?
带状疱疹是什么症状,单纯疱疹又是什么症状,都是艾滋病引起的吗
六千预算,专玩游戏,例如刺客信条大革命,战地3,4。我还活着,GTA5,要求画质好点
为什么说两足直立行走时人类祖先与猿分界的重要标志?