解答:证明:(1)∵a+b+c=1,
∴
+1 a
+1 b
=(a+b+c)(1 c
+1 a
+1 b
)=3+(1 c
+b a
)+(a b
+c a
)+(a c
+c b
),b c
∵a、b、c均为正数,
∴
+b a
≥2,a b
+c a
≥2,a c
+c b
≥2,b c
代入上式,得
+1 a
+1 b
≥9 1 c
(2)∵a,b,c均为正数,
∴a2+b2≥2ab,
a2+c2≥2ac,
b2+c2≥2bc,
以上三式累加得:2(a2+b2+c2)≥2(ab+ac+bc),
∴a2+b2+c2≥ab+ac+bc;①
又a+b+c=1,
∴(a+b+c)2=a2+b2+c2+2(ab+ac+bc)=1≥3(ab+bc+ca),
∴ab+bc+ca≤
(当且仅当a=b=c=1 3
时取“=”).1 3