(1)经过计算可知:a4=k+1,a5=k+2,a6=k+4+
.2 k
求得b1=b3=2,b2=b4=
.…(4分)2k+1 k
(2)由条件可知:an+1an-2=k+anan-1.…①
类似地有:an+2an-1=k+an+1an.…②
①-②有:
=
an+an+2
an+1
an?2+an
an?1
即:bn=bn-2
∴b2n?1=b2n?3=…=b1=
=2
a1+a3
a2
,b2n=b2n?2=…=b2=
=
a2+a4
a3
2k+1 k
所以:bn=
+4k+1 2k
.…(8分)(?1)n 2k
(3)假设存在正数k,使得数列{an}的每一项均为整数
则由(2)可知:
…③
a2n+1=2a2n?a2n?1
a2n+2=
a2n+1?a2n
2k+1 k
由a1=k∈Z,a6=k+4+
∈Z可知k=1,2.2 k
当k=1时,