2(x²
+
1/x²)
-
3(x
+
1/x)
-
1
=
0
2(x²
+
2
+
1/x²
-
2)
-
3(x
+
1/x)
-
1
=
0
2(x
+
1/x)²
-
3(x +
1/x)
- 5
=
0
[2(x
+
1/x)
-
5][(x
+
1/x)
+
1]
=
0
2(x
+
1/x)
-
5
=
0
2x²
+
2
-
5x
=
0
(2x
-
1)(x
-
2)
=
0
x1
=
1/2
x2
=
2
(x
+
1/x)
+
1
=
0
x²
+
x
+
1
=
0
x²
+
x
+
(1/2)²
-
(1/2)²
+
1
=
0
(x
+
1/2)²
=
-3/4
无解。
所以原方程的根为
x1
=
1/2
x2
=
2