数学两道题数列通项公式

2025-02-24 12:19:19
推荐回答(3个)
回答1:

回答2:

1)a1=1 an=[(2n-1)/(2n+1)]*a(n-1)
an/a(n-1)=(2n-1)/(2n+1)
累乘得
an/a1=a2/a1*a3/a2*.....*an/a(n-1)=3/5*5/7*...*(2n-1)/(2n+1)=3/(2n+1)
an=3/(2n+1)
2)a1=1 a(n+1)=3^n*an
a(n+1)/an=3^n
累乘得
a(n+1)/a1=a2/a1*a3/a2*a4/a3*...*a(n+1)/an=3*3^2*....*3^n=3^(1+2+...+n)
a(n+1)/a1=3^(1+2+...+n)=3^[1/2*(n^2+n)]
a(n+1)=3^[1/2*(n^2+n)]
an=3^[1/2*(n^2-n)]

回答3:

an=3/(2n+1)
an=2的(n-1)次方