1.n→∞时1/(n^2+n+1)+2/(n^2+n+2)+……+n/(n^2+n+n)
>(1+2+……+n)/(n^2+n+n)
=(1+n)/[2(n+2)]→1/2,
1/(n^2+n+1)+2/(n^2+n+2)+……+n/(n^2+n+n)
<(1+2+……+n)/(n^2+n+1)
=n(1+n)/[2(n^2+n+1)]→1/2,
∴1/(n^2+n+1)+2/(n^2+n+2)+……+n/(n^2+n+n)→1/2,
∴(1/n)/(n^2+n+1)+(2/n)/(n^2+n+2)+……+(n/n)/(n^2+n+n)→1/(2n)→0,
∴原式=1/2.
2.省去低阶的无穷大量。