高数定积分 求弧长

2025-02-25 21:21:33
推荐回答(2个)
回答1:

I = ...... = ∫<3/4, 4/3>√(1+θ^2)dθ/θ^2
令 θ = tanu, 则
I = ∫(secu)^3du/(tanu)^2
= ∫du/[cosu(sinu)^2]
= ∫dsinu/[(cosu)^2 (sinu)^2]
= ∫dsinu/{[1-(sinu)^2](sinu)^2}
= ∫[1/(sinu)^2 + (1/2)[1/(1-sinu) + 1/(1+sinu)]dsinu
= [-cotu +(1/2)ln{(1+sinu)/(1-sinu)}]
= 7/12 + ln(3/2)

回答2: