大数据应该怎么学?有哪些要求?

2025-03-03 21:03:34
推荐回答(5个)
回答1:

大数据课程知识点较多,学起来有一定难度!

“大数据”就是一些把我们需要观察的对象数据化,然后把数据输入计算机,让计算机对这些大量的数据进行分析之后,给出我们一些结论。

大数据学习内容主要有:

①JavaSE核心技术;

②Hadoop平台核心技术、Hive开发、HBase开发;

③Spark相关技术、Scala基本编程;

④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;

⑤大数据项目开发实战,大数据系统管理优化等。

你可以考察对比一下南京课工场、北大青鸟、中博软件学院等开设有大数据专业的学校。祝你学有所成,望采纳。

北大青鸟中博软件学院大数据毕业答辩

回答2:

一、学习大数据需要的基础
1、java SE、EE(SSM)
90%的大数据框架都是Java写的
2、MySQL
SQL on Hadoop
3、Linux
大数据的框架安装在Linux操作系统上
在有了上面的技术基础支撑之后,便可以开始我们的大数据开发工程师的锻造之旅了,可以根据以下三个大的方面进行学习,当然了,中间需要穿插一些项目练习,将理论和实战相关联才能成长的很快!
二、大数据技术需要学什么
1、大数据离线分析
一般处理T+1数据(T:可能是1天、一周、一个月、一年)
a、Hadoop :一般不选用新版本,踩坑难解决
(common、HDES、MapReduce、YARN)
环境搭建、处理数据的思想
b、Hive:大数据的数据仓库
经过写SQL对数据进行操作,类似于MySQL数据库的sql
c、HBase:基于HDFS的NOSQL数据库
面向列存储
d、协作框架:
sqoop(桥梁:HDFS《==》RDBMS)
flume:搜集日志文件中的信息
e、调度框架
anzkaban
了解:crotab(Linux自带)
zeus(Alibaba)
Oozie(cloudera)
f、前沿框架扩展:
kylin、impala、ElasticSearch(ES)
2、大数据实时分析
以spark框架为主
Scala:OOP(面向对象程序设计)+FP(函数是程序设计)
sparkCore:类比MapReduce
sparkSQL:类比hive
sparkStreaming:实时数据处理
kafka:消息队列
前沿框架扩展:flink
阿里巴巴:blink
3、大数据机器学习
spark MLlib:机器学习库
pyspark编程:Python和spark的结合
以上就是大数据的学习路线,有兴趣的朋友,也可以了解下人工智能和物联网。

回答3:

大数据专业专业课程难度大,有本科学历要求!
大数据学习内容主要有:
①JavaSE核心技术;
②Hadoop平台核心技术、Hive开发、HBase开发;
③Spark相关技术、Scala基本编程;
④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;
⑤大数据项目开发实战,大数据系统管理优化等。
你可以考察对比一下南京课工场、北大青鸟、中博软件学院等开设有大数据专业的学校。祝你学有所成,望采纳。

回答4:

大数据对学历要求还是挺高的,建议本科及本科以上学最好。可以报个培训班,能快速的系统的学习出来,早早就业。

回答5:

大数据这个你可以去学习他大数据专业,然后这样的话在学习的过程中就会好一点。