(1)证明:∵3tSn+1-(2t+3)Sn=3t,
∴3tSn-(2t+3)Sn-1=3t,(n≥2),
两式相减得3tan+1-(2t+3)an=0,
又∵t>0,∴
=an+1 an
(n≥2),2t+3 3t
当n=2时,3tS2-(2t+3)S1=3t,
即3t(a1+a2)-(2t+3)a1=3t,且a1=1,
得a2=
,则2t+3 3t
=a2 a1
,2t+3 3t
即
=an+1 an
对n≥1都成立,2t+3 3t
∴{an}为以1为首项,
为公比的等比数列,2t+3 3t
(2)解:由已知得,f(t)=
,2t+3 3t
∴bn+1=f(
)=1 bn
=
+32 bn
3 bn
=2+3bn
3
+bn,2 3
即bn+1?bn=
,2 3
∴{bn}是一个首项为1,公差为
的等差数列,2 3
则bn=1+(n-1)×
=2 3
n+2 3
,1 3
(3)解:Tn=b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1?
=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)=-2d(b2+b4+…+b2n)
=-2×
(b2+b4+…+b2n)=-2×2 3
[2 3