(x^3+3)/[x^2 (1+x)] = [(x^3+x^2)-x^2+3]/[x^2 (1+x)]
= 1 - 1/(1+x) + 3/[x^2 (1+x)] ,
真分式 3/[x^2 (1+x)] 再用待定系数法化为部分分式
3/[x^2 (1+x)] = A/x + B/x^2 + C/(1+x)
= [B + (A+B)x + (A+C)x^2]/[x^2 (1+x)] ,
则 B= 3, A= -3, C= 3,
于是 (x^3+3)/[x^2 (1+x)] = 1 - 1/(1+x) - 3/x + 3/x^2 + 3/(1+x)
= 1 - 3/x + 3/x^2 + 2/(1+x)