可以这样想,就是设法提出x+y+z出来,采用降次的方法,过程如下:
x^3+y^3+z^3
=x^2(x+y+z)+y^2(x+y+z)+z^2(x+y+z)-x^2(y+z)-y^2(x+z)-z^2(x+y)
=(x^2+y^2+z^2)(x+y+z)-x^2(y+z)-y^2(x+z)-z^2(x+y)
=(x^2+y^2+z^2)(x+y+z)-[xy(x+y+z)+xz(x+y+z)+yz(x+y+z)-3xyz]
=(x^2+y^2+z^2)(x+y+z)-(xy+xz+yz)(x+y+z)+3xyz
故当m=-3时,代数式能被x+y+z整除
xyz≠0
x^3+y^3+z^3+mxyz
=(x^3+y^3+z^3+3x^2y+3xy^2+3y^2z+3yz^2+3x^2z+3xz^2+6xyz)-(3x^2y+3xy^2+3y^2z+3yz^2+3x^2z+3xz^2+6xyz)+ mxyz
=(x+y+z)^3-(3x^2y+3xy^2+3xyz-3xyz)-(3y^2z+3yz^2+3xyz-3xyz)-(3x^2z+3xz^2+3xyz-3xyz)-6xyz+ mxyz
=(x+y+z)^3-3xy(x+y+z)-3yz(x+y+z)-3xz(x+y+z)+3*3xyz-6xyz+mxyz
=(x+y+z)^3-3xy(x+y+z)-3yz(x+y+z)-3xz(x+y+z)+(m+3)xyz
当m=-3时,x^3+y^3+z^3+mxyz =(x+y+z)^3-3xy(x+y+z)-3yz(x+y+z)-3xz(x+y+z),可以被(x+y+z)整除
整除的结果是:(x+y+z)^2-3xy-3yz-3xz