函数y=sin(2x+π6)+cos(2x+π3)的最小正周期为______;最大值分别为______

2025-04-26 22:55:11
推荐回答(2个)
回答1:

函数y=sin(2x+

π
6
)+cos(2x+
π
3
)=sin(2x+
π
6
)+sin[
π
2
?(2x+
π
3
) ]
 
=sin(2x+
π
6
)+sin(
π
6
?2x)
=cos2x,
故最小正周期等于
2
=π,当2x=2kπ,即 x=kπ (k∈z)时,
函数y=cos2x有最大值等于1,
故答案为 π,1.

回答2:

解:∵y=sin(2x+π6)+cos(2x+π3)=32sin2x+12cos2x+12cos2x-32sin2x=cos2x
∴原函数的最小正周期是2π2=π,最大值是1
故选A.