函数y=sin(2x+
)+cos(2x+π 6
)=sin(2x+π 3
)+sin[π 6
?(2x+π 2
) ] π 3
=sin(2x+
)+sin(π 6
?2x)=cos2x,π 6
故最小正周期等于
=π,当2x=2kπ,即 x=kπ (k∈z)时,2π 2
函数y=cos2x有最大值等于1,
故答案为 π,1.
解:∵y=sin(2x+π6)+cos(2x+π3)=32sin2x+12cos2x+12cos2x-32sin2x=cos2x
∴原函数的最小正周期是2π2=π,最大值是1
故选A.