在数列{a n }中,其前n项和S n 与a n 满足关系式:(t-1)S n +(2t+1)a n =t(t>0,n=1,2,3,…).

2025-05-01 10:09:03
推荐回答(1个)
回答1:

证明:(Ⅰ) 当n=1时,(t-1)S 1 +(2t+1)a 1 =t,∴a 1 =
1
3

当n≥2时,(t-1)S n +(2t+1)a n =t,(t-1)S n-1 +(2t+1)a n-1 =t
∴(t-1)a n +(2t+1)a n -(2t+1)a n-1 =0
∴3ta n =(2t+1)a n-1 ,t>0
a n
a n-1
=
2t+1
3t
a 1 =
1
3

∴数列{a n }是以
2t+1
3t
为公比,
1
3
为首项的等比数列;
(II)由(Ⅰ)可知, f(t)=
2t+1
3t
(t>0)
b n+1 =3f(
1
b n
)
,则b n+1 =b n +2
所以,数列{b n }是以2为公差,首项为1的等差数列
即b n =2n-1
①当n为奇数时,
b 1 b 2 -b 2 b 3 +b 3 b 4 -b 4 b 5 +…+(-1) n+1 b n b n+1
=b 1 b 2 +b 3 (b 4 -b 2 )+b 5 (b 6 -b 4 )+…+b n (b n+1 -b n-1
=3+4(b 3 +b 5 +…+b n
=2n 2 +2n-1
②当n为偶数时,
b 1 b 2 -b 2 b 3 +b 3 b 4 -b 4 b 5 +…+(-1) n+1 b n b n+1
=b 2 (b 1 -b 3 )+b 4 (b 3 -b 5 )+…+b n (b n-1 -b n+1
=-4(b 2 +b 4 +…+b n
=-(2n 2 +2n)
所以,原式=
2 n 2 +2n-1       n为奇数
-(2 n 2 +2n)       n为偶数