1、键值(Key-Value)存储数据库
这一类数据库主要会使用到一个哈希表,这个表中有一个特定的键和一个指针指向特定的数据。Key/value模型对于IT系统来说的优势在于简单、易部署。
但是如果数据库管理员(DBA)只对部分值进行查询或更新的时候,Key/value就显得效率低下了。举例如:Tokyo Cabinet/Tyrant,Redis,Voldemort,Oracle BDB。
2、列存储数据库
这部分数据库通常用来应对分布式存储的海量数据。键仍然存在,但是它们的特点是指向了多个列。这些列是由列家族来安排的。如:Cassandra,HBase,Riak。
3、文档型数据库
文档型数据库的灵感是来自于Lotus Notes办公软件的,而且它同第一种键值存储相类似。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,比如JSON。
文档型数据库可以看作是键值数据库的升级版,允许之间嵌套键值,在处理网页等复杂数据时,文档型数据库比传统键值数据库的查询效率更高。如:CouchDB,MongoDb,国内也有文档型数据库SequoiaDB,已经开源。
4、图形(Graph)数据库
图形结构的数据库同其他行列以及刚性结构的SQL数据库不同,它是使用灵活的图形模型,并且能够扩展到多个服务器上。
NoSQL数据库没有标准的查询语言(SQL),因此进行数据库查询需要制定数据模型。许多NoSQL数据库都有REST式的数据接口或者查询API。如:Neo4J,InfoGrid,Infinite Graph。
扩展资料
NoSQL数据库适合追求速度和可扩展性、业务多变的应用场景。对于非结构化数据的处理更合适,如文章、评论,这些数据如全文搜索、机器学习通常只用于模糊处理,并不需要像结构化数据一样,进行精确查询,而且这类数据的数据规模往往是海量的,数据规模的增长往往也是不可能预期的。
而NoSQL数据库的扩展能力几乎也是无限的,所以NoSQL数据库可以很好地满足这一类数据的存储。NoSQL数据库利用key-value可以大量的获取大量的非结构化数据,并且数据的获取效率很高,但用它查询结构化数据效果就比较差。
参考资料来源:百度百科-数据库
参考资料来源:百度百科-NoSQL