已知函数f(x)=ax3+bx2-x+c(a,b,c∈R且a≠0),(1)若b=1且f(x)在(2,+∞)上存在单调递增区间,

2025-02-26 10:20:25
推荐回答(1个)
回答1:

(1)当b=1时f'(x)=3ax2+2x-1,f(x)在(2,+∞)上存在单调递增区间,即f'(x)在(2,+∞)上存在区间使f'(x)>0.
①a>0时,f'(x)=3ax2+2x-1是开口向上的抛物线.
显然f'(x)在(2,+∞)上存在区间,使f'(x)>0即a>0适合.
②a<0时,f'(x)=3ax2+2x-1是开口向下的抛物线.
要使f'(x)在(2,+∞)上存在区间有f'(x)>0,则f'(x)=3ax2+2x-1=0在(2,+∞)上有一解或两解.
即f'(2)>0或
△>0
f′(2)≤0
?
1
3a
>2
?a>?
1
4
或无解,
a<0∴a∈(?
1
4
,0)

综合得a∈(?
1
4
,0)∪(0,+∞)

(2)不存在实数a,b,c满足条件.
事实上,由f(x1)=f(x2)得:a(x13-x23)+b(x12-x22)-(x1-x2)=0
∵x1≠x2∴a(x12+x1x2+x22)+b(x1+x2)-1=0
又f'(x)=3ax2+2bx-1
f′(
x1+x2
2
)=3a(
x1+x2
2
)2+2b?
x1+x2
2
?1

=3a?
x
+
x
+2x1x2
4
+1?a(
x
+x1x2+
x
)?1=?
a
4
(x1?x2)2

∵a≠0且x1?x2≠0∴f′(
x1+x2
2
)≠0

故不存在实数a,b,c满足条件.