(1)当b=1时f'(x)=3ax2+2x-1,f(x)在(2,+∞)上存在单调递增区间,即f'(x)在(2,+∞)上存在区间使f'(x)>0.
①a>0时,f'(x)=3ax2+2x-1是开口向上的抛物线.
显然f'(x)在(2,+∞)上存在区间,使f'(x)>0即a>0适合.
②a<0时,f'(x)=3ax2+2x-1是开口向下的抛物线.
要使f'(x)在(2,+∞)上存在区间有f'(x)>0,则f'(x)=3ax2+2x-1=0在(2,+∞)上有一解或两解.
即f'(2)>0或
?a>?
△>0 f′(2)≤0 ?
>21 3a
或无解,1 4
又a<0∴a∈(?
,0)1 4
综合得a∈(?
,0)∪(0,+∞)1 4
(2)不存在实数a,b,c满足条件.
事实上,由f(x1)=f(x2)得:a(x13-x23)+b(x12-x22)-(x1-x2)=0
∵x1≠x2∴a(x12+x1x2+x22)+b(x1+x2)-1=0
又f'(x)=3ax2+2bx-1
∴f′(
)=3a(
x1+x2
2
)2+2b?
x1+x2
2
?1
x1+x2
2
=3a?
+1?a(
+
x
+2x1x2
x
4
+x1x2+
x
)?1=?
x
(x1?x2)2a 4
∵a≠0且x1?x2≠0∴f′(
)≠0
x1+x2
2
故不存在实数a,b,c满足条件.