每一对顶点之间的最短路径是指对于给定的带权有向图G=(v,E),要对G中任意一对顶点有序对(vi,vj)(vi≠vj),找出vi到vj的最短距离和vj到vi的最短距离。
解决此问题的一个有效方法是:轮流以每一个顶点为源点,重复执行Dijkstra算法n次,即可求得有向图G=(v,E)中每一对顶点间的最短路径,总的时间复杂度为0(n2)。
弗洛伊德(Floyd)提出了另一个求任意两顶点之间最短路径的算法,虽然其时间复杂度也是0(n2),但算法形式更为简明,易于理解与编程。
1.弗洛伊德算法的思想弗洛伊德算法是从图的邻接矩阵开始,按照顶点v0,v1,v2,v2,…,vn的次序,分别以每个顶点vk(0≤k<n)作为新考虑的中间点,在第k-1次运算D(k-1)的基础上,求出每一对顶点之间vi到vj的最短路径长度D(k)[i][j],计算公式为:
D(k)[i][j]=min{D(k-1)[i][j],D(k-1)[i][k]+D(k-1)[k][j]}重复执行n次后,D(k)[i][j]中保留的值就是每对顶点的vi到vj的最短路径长度。
2.弗洛伊德算法的步骤(1)从图的带权邻接矩阵G.arcs[][]开始,即D(-1)=arcs[][],每次以上一次D(k-1)为基础,用公式D(k)[i][j]=min{D(k-1)[i][j],D(k-1)[i][k]+D(k-1)[k][j]}计算出D(k)[i][j]的值,即D(k-1)[i][k]+D(k-1)[k][j]<D(k-1)[i][j]才修改,若D(k)[i][j]修改过,则相应的路径P(k)[i][j]也要作相应的修改,即P(k)[i][j]=P(k-1)[i][k]+P(k-1)[k][j]。
(2)重复上述过程n次后,D(k)[i][j]中保存的就是每一对顶点的最短路径长度,P(k)[i][j]中保存的就是每一对顶点的最短路径。
说明:从计算公式可以看出,i=j是对角线上的元素;i=k是i行上的元素;j=k是j列上的元素,这些特殊的顶点不用计算,保留原来的数据值。因此,计算的数据元素减少了很多。