f(x)≥g(x)即2xlnx≥-x2+ax-3,整理得a≤2lnx+x+ 3 x ,令h(x)=2lnx+x+ 3 x (x>0),则h′(x)= 2 x +1? 3 x2 = (x+3)(x?1) x2 ,当0<x<1时,h′(x)<0,h(x)递减;当x>1时,h′(x)>0,h(x)递增,∴h(x)min=h(1)=4,∵f(x)≥g(x)恒成立,∴a≤4,故选A.