原题是:设f(x)和g(x)都在[a,b]上连续,在(a,b)内可导,f(a)=g(a,)且对所有x∈(a,b)有f'(x)证明:设F(x)=f(x)-g(x)由已知得 F(x)在[a,b]上连续,在(a,b)内可导,F(a)=0.且对所有x∈(a,b)有F'(x)=f'(x)-g'(x)<0得F(x)在[a,b]上连续,在(a,b)上单减且F(a)=0。有F(b)=f(b)-g(b)所以 f(b)希望能帮到你!