设fx和gx都在[a,b]上连续,在(a,b)内可导,fa=ga,且对所有x∈(a,b)有f✀(

)<g✀(x),证明fb<gb
2025-05-02 00:09:30
推荐回答(1个)
回答1:

原题是:设f(x)和g(x)都在[a,b]上连续,在(a,b)内可导,f(a)=g(a,)且对所有x∈(a,b)有f'(x)证明:设F(x)=f(x)-g(x)
由已知得 F(x)在[a,b]上连续,在(a,b)内可导,F(a)=0.
且对所有x∈(a,b)有F'(x)=f'(x)-g'(x)<0
得F(x)在[a,b]上连续,在(a,b)上单减且F(a)=0。
有F(b)=f(b)-g(b)所以 f(b)
希望能帮到你!