半径是R,质量是M的空心球壳绕直径转动时的转动惯量是多少? (球壳质量均匀分布)

请写详细推导过程!谢谢了
2025-04-07 08:14:40
推荐回答(3个)
回答1:

设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段与z轴正向所夹的角,φ为从正z轴来看自x轴按逆时针方向转到有向线段的角,这里M为点P在xOy面上的投影。这样的三个数r,φ,θ叫做点P的球面坐标,这里r,φ,θ的变化范围为

r∈[0,+∞),

φ∈[0, 2π],

θ∈[0, π] .

当r,θ或φ分别为常数时,可以表示如下特殊曲面:

r = 常数,即以原点为心的球面;

θ= 常数,即以原点为顶点、z轴为轴的圆锥面;

φ= 常数,即过z轴的半平面。

球坐标系下的微分关系:

在球坐标系中,沿基矢方向的三个线段元为:

dl(r)=dr, dl(θ)=rdθ, dl(φ)=rsinθdφ

球坐标的面元面积是:

dS=dl(θ)× dl(φ)=r2sinθdθdφ

体积元的体积为:

dV=dl(r)×dl(θ)×dl(φ)= r2sinθdrdθdφ

对于球壳转动惯量:

设以z坐标为轴的转动惯量J;球壳面积密度ρ;回转半径Rsinθ;

dJ=ρ(Rsinθ)2 dS

球壳半径为常数,dS =R2sinθdθdφ

J=2∫02∏∫0∏/2 ρ(Rsinθ)2 R2sinθdθdφ ;取半壳积分

=2ρR4∫02∏∫0∏/2 sinθ3 dθdφ

=8/3 ρ∏R4

ρ=球壳质量M/球壳面积S

S=2∫02∏∫0∏/2 R2sinθdθdφ=4∏R2

把ρ=M/(4∏R2)代入得

得 J=2/3 MR2

回答2:

积分∫(R*R-z*z)3/2dz 求解如下
∫(R*R-z*z)3/2dz
=R3∫[1-(z/R)2]3/2dz
令t=z/R,-1=则积分可化为
R3∫(1-t2)3/2d(Rt)
=R4∫(1-t2)3/2dt
再令t=sinx
则积分为
R4∫(1-t2)3/2dt
=R4∫cos3xdsinx
而∫cos3xdsinx很容易求解的!
可我求了之后答案不对,这种做法可能是有问题的!

回答3:

J=(2/3)mR^2