运用乘法公式计算(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)

2025-02-24 19:58:09
推荐回答(1个)
回答1:

设S=原式=(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
两边同乘以(3-1)得:
(3-1)S
=(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
=(3^4-1)(3^4+1)(3^8+1)(3^16+1)
=(3^8-1)(3^8+1)(3^16+1)
=(3^16-1)(3^16+1)
=(3^32-1)

所以
2S=(3^32-1)
原式=(3^32-1)/2