数学,线性代数,矩阵进行初等变换后与原矩阵进行相同的乘方再计算其各自行列式,最后得出的结果相同吗?

2025-02-26 13:12:54
推荐回答(3个)
回答1:

一般不会相同。
矩阵进行初等变换后与原矩阵进行相同的乘方再计算其各自行列式,最后得出的结果一般不会相同。这是因为,矩阵的初等变换有三种不同的变换,
(1)交换两行或两列;
(2)将某行(或列)乘以一个非零的数;
(3)将某行(或列)乘以一个数加到另一行(列)的对应元素上。
由行列式的运算性质可知,只有第(3)类初等变换不改变行列式的值。
所以,如果只做了第(3)类初等变换,结果一定相同,但如果还参与了另外两种变换,则结果一般不会相同。

回答2:

不同。
例如 (2E)^2 = 4E, 其行列式是 4;
2E 经初等变换可变为 E, E^2 = E。 其行列式是 1。

回答3:

初等行变换的交换两行,行列式变不变?

初等行变换的某行乘以k倍,行列式变不变?
显然这都会改变行列式值的。
我们对矩阵进行初等变换,要想明白用意何在。首先初等变换不会改变矩阵的秩,其次,初等行变换不会改变列向量的相关性表示系数(同理,初等列变换不会改变行向量的相关性的表示系数),这点用在解方程组上。