复合函数的求导公式
复合函数求导要依据“分步求导”的原则,即:f[g(x)]关于x的导数是:{f[g(x)]}' = f'[g(x)] * g'(x)
Y=f(u),U=g(x),则y′=f(u)′*g(x)′ 例1.y=Ln(x^3),Y=Ln(u),U=x^3, y′=f(u)′*g(x)′=[1/Ln(x^3)]*(x^3)′=[1/Ln(x^3)]*(3x^2) =(3x^2)/Ln(x^3)]