已知正项数列{a n },其前n项和S n 满足10S n =a n 2 +5a n +6且a 1 ,a 3 ,a 15 成等比数列.(1)求

2025-04-27 22:22:15
推荐回答(1个)
回答1:

(1)∵10S n =a n 2 +5a n +6,①∴10a 1 =a 1 2 +5a 1 +6,解之得a 1 =2或a 1 =3.
又10S n-1 =a n-1 2 +5a n-1 +6(n≥2),②
由①-②得 10a n =(a n 2 -a n-1 2 )+5(a n -a n-1 ),即(a n +a n-1 )(a n -a n-1 -5)=0
∵a n +a n-1 >0,∴a n -a n-1 =5 (n≥2).
当a 1 =3时,a 3 =13,a 15 =73.a 1 ,a 3 ,a 15 不成等比数列∴a 1 ≠3;
当a 1 =2时,a 3 =12,a 15 =72,有 a 3 2 =a 1 a 15 ,∴a 1 =2,∴a n =5n-3.
(2)∵b n =20-a n =23-5n
所以T n =
n(18+23-5n)
2
=
n(41-5n)
2
=
-5
2
(n-
41
10
)   2 +
1681
20

当n=4时,T n 取得最大值42.