(1)∵10S n =a n 2 +5a n +6,①∴10a 1 =a 1 2 +5a 1 +6,解之得a 1 =2或a 1 =3. 又10S n-1 =a n-1 2 +5a n-1 +6(n≥2),② 由①-②得 10a n =(a n 2 -a n-1 2 )+5(a n -a n-1 ),即(a n +a n-1 )(a n -a n-1 -5)=0 ∵a n +a n-1 >0,∴a n -a n-1 =5 (n≥2). 当a 1 =3时,a 3 =13,a 15 =73.a 1 ,a 3 ,a 15 不成等比数列∴a 1 ≠3; 当a 1 =2时,a 3 =12,a 15 =72,有 a 3 2 =a 1 a 15 ,∴a 1 =2,∴a n =5n-3. (2)∵b n =20-a n =23-5n 所以T n =
当n=4时,T n 取得最大值42. |