怎样把二阶系统模型转变为差分方程

把G(S)=20/(S^2+36S+57)变成差分方差。谢谢啦。着急用拜托了。
2025-02-27 01:06:52
推荐回答(2个)
回答1:

这个可以参照 赖寿宏主编的《微型计算机控制技术》机械工业出版社里面离散化的那一部分
`U(t)=[u(k)-u(k-1)]/T;
``U(t)=[u(k)-2u(k-1)+u(k-2)]/(T*T);
具体的上面有计算例子,例子很详细的

回答2:

1、c2d:假设在输入端有一个零阶保持器,把连续时间的状态空间模型转到离散时间状态空间模型。
[SYSD,G]=C2D(SYSC,Ts,METHOD)里面的method包括:
zoh 零阶保持, 假设控制输入在采样周期内为常值,为默认值。
foh 一阶保持器,假设控制输入在采样周期内为线性。 tustin 采用双线性逼近。
matched 采用SISO系统的零极点匹配法
2、只有U_1是2处的初始状态值,而U_2是用来传递U(k)的,所以U_2是U_1在下一个ts时间内的值
3、从差分方程获取传递函数:
y(k)+a1(k-1)+……+an(k-n)=b0x(k)+b1x(k-1)+……+bmx(k-m)在零初始条件下对,对方程两边进行Z变换,得到该系统的脉冲传递函数G(Z)=Y(Z)/X(X)=[b0z^m+b1z^(m-1)+……+bm]/[z^n+a1z^(n-1)+……an] 其中m《n
或等效形式G(Z)=Y(Z)/X(X)=[b0+b1z^(-1)+……+bmz^(-m)]/[1+a1z^(-1)+……anz^(-n)] 其中m《n

从脉冲传递函数到差分方程
G(Z)=Y(Z)/X(X)=[b0+b1z^(-1)+……+bmz^(-m)]/[1+a1z^(-1)+……anz^(-n)] 其中m《n 交叉相乘得Y(Z)[1+a1z^(-1)+……anz^(-n)]=X(X)[b0+b1z^(-1)+……+bmz^(-m)]对X(z)和Y(z)进行z逆变换的到差分方程y(k)+a1y(k-1)+……+any(k-n)=b0x(k)+b1x(k-1)+……+bmx(k-m)

4、纯延迟系统G(s)=20e^(-0.02s)/(1.6s^2+4.4s+1)
num=[20];
den=[1.6 4.4 1];
sys=tf(num,den,'inputdelay',0.02)