解:
(1)
f(x)=cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)
=1/2cos2x+√3/2sin2x+(sinx-cosx)(sinx+cosx)
=1/2cos2x+√3/2sin2x+sin²x-cos²x
=1/2cos2x+√3/2sin2x-cos2x
=sin(2x-π/6)
∴最小正周期:T=2π/2=π
由2x-π/6=kπ+π/2(k∈Z)
得x=kπ/2+π/3(k∈Z)
∴函数图象的对称轴方程为:x=kπ+π/3(k∈Z)
(2)
∵x∈[-π/12,π/2]
∴2x-π/6∈[-π/3,5π/6]
∵f(x)=sin(2x-π/6)在区间[-π/12,π/3]上单调递增,在区间[π/3,π/2]上单调递减
∴x=π/3时,f(x)取最大值1
又∵f(-π/12)=-√3/2<f(π/2)=1/2
当x=-π/12时,f(x)取最小值-√3/2
∴函数f(x)在区间[-π/12,π/12]上的值域是:[-√3/2,1]