已知x⼀(x^2+x+1)=1⼀3,求(x^2)⼀(x^4+x^2+1)的值

2025-02-26 11:46:26
推荐回答(2个)
回答1:

x/(x^2+x+1)=1/3
=>1/(x+1+1/x)=1/3
=>x+1/x=2
=>(x+1/x)^2=4
=>(x^2+1/x^2)=4-2=2
所以
(x^2)/(x^4+x^2+1)
=1/(x^2+1/x^2+1)
=1/(2+1)
=1/3

回答2:

解:
由x/(x^2+x+1)=1/3可知x=1;
代入所求式子:
(x^2)/(x^4+x^2+1)=1/3