数学名人名言

2025-02-22 22:10:23
推荐回答(3个)
回答1:

数统治着宇宙。 ——毕达哥拉斯

数学,科学的女皇;数论,数学的女皇。 ——C•F•高斯

上帝创造了整数,所有其余的数都是人造的。 ——L•克隆内克

上帝是一位算术家 ——雅克比

音乐与代数很类似。 ——哈登伯格

硬说数学科学无美可言的人是错误的。美的主要形式是秩序、匀称与明确。 ——亚里斯多德

感觉到数学的美,感觉到数与形的协调,感觉到几何的优雅,这是所有真正的数学家都清楚的真实的美的感
觉。 ——庞加莱
数学之美是很自然明白地摆着的。 ——哈尔莫斯

我认为,说数学家选择课题的准则以及判断他是否成功的准则,主要的是美学准则,这是正确的。

——冯.诺伊 曼

我的工作总是力图把真与美结合起来,但是,当我不得不选择其中的一种时,我通常选择美。 ——韦尔

在数学定理的评价中,审美标准既重于逻辑的标准,也重于实用的标准:在对数学思想的评价时,美与优雅比是否严密、正确,比是否有用都重要得多。 ——斯蒂恩

纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的。 ——哈尔莫斯

对早已正确认定的定理做进一步的研究,探索它的新证法,只不过是因为现有的证明欠缺美的魅力。——克莱因

数学家如画家或诗人一样,是款式的制造者......数学家的款式,如同画家或诗人的款式,必须是美的……世上没有丑陋数学的永久立身之地。 ——哈代

一种奇特的美统治着数学王国,这种美不像艺术之美与自然之美那么相类似,但她深深地感染着人们的心灵,激起人们对她的欣赏,与艺术之美是十分相象的。 ——库默

难道不可以把音乐描绘成感觉的数学,而把数学描绘成理性的音乐吗?这样,音乐家感觉到数学,数学家想到音乐——音乐是梦想,数学是工作的一生——每一方都经由对方达到尽善尽美的境地,那时,人类的智慧达到完美的典型,将在某个未来的莫扎特——狄利克雷或贝多芬——高斯的歌颂下而光彩夺目。这种联合已经在一个赫姆霍尔兹的天才和工作中清楚地预示出来了。
——西尔弗斯特

算术)是人类知识最古老,也许是最最古老的一个分支;然而它的一些最深奥的秘密与其最平凡的真理是密切相连的。 ――H.J.S.史密斯

也许听起来奇怪,数学的力量在于它规避了一切不必要的思考和它惊人地节省了脑力劳动。 ――恩斯特·马赫

但是数学享有盛誉还有另一个原因:正是数学给了各种精密自然科学一定程度的可靠性,没有数学,它们不可能获得这样的可靠性。――艾伯特·爱因斯坦

一般地说,我更想把数学视为是艺术,而不是科学。因为我们可以说,数学家的活动,当他受外部的理性世界所引导,而不是被控制时,不断地进行创造性的活动,与一个艺术家、一个画家的活动相类似,有着实在的,不是虚幻的相似点。数学家这一方面的严密演绎推理可以比喻为画家那一方面的绘画技巧。恰如没有一定技巧的人不能成为一位好画家一样,没有一定的精密推理能力的人不能成为一位好的数学家。但是,这些尽管是他们的基本特质,还不足以使一个画家或数学家名副其实,画图技巧与推理能力,说实在的,终究不是最重要的因素。远为敏感的,为二者都是主要的一类特质是想象力,它才能造就一名杰出的艺术家或杰出的数学家。 ——博歇

我们能够期待,随着教育与娱乐的发展,将有更多的人欣赏音乐与绘画。但是,能够真正欣赏数学的人数是很少的。 —贝尔斯

在现实中,不存在像数学那样有如此多的东西,持续了几千年依然是确实的如此美好。 ——苏利文确。

给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。——A•L•柯西

纯数学是魔术家真正的魔杖。——诺瓦列斯

如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。——柏拉图

整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。——G•D•伯克霍夫

数学的本质在于它的自由。 ――康托尔

在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。 ――康托尔

没有任何问题可以像无穷那样深深地触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想,然而也没有任何其它的概念能像无穷那样需要加以阐明。 ――希尔伯特

数统治着宇宙。 ――毕达哥拉斯

数学,科学的皇后;算术,数学的皇后。 ――高斯

数学是无穷的科学。 ――赫尔曼外尔

回答2:

“我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。”
----王菊珍
“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。” ----华罗庚
“一个做学问的人, 除了学习知识外, 还要有“tast”, 这个词不太好翻译, 有的译成品味, 喜爱。 一个人要有大的成就, 就要有相当清楚的“tast”。 ”----杨振宁
“数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。”----陈省身

“科学需要实验。但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。这是科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。所以数学家有饭吃了,但不能得诺贝尔奖,是自然的。”
---陈省身
“数学中没有诺贝尔奖,这也许是件好事。诺贝尔奖太引人注目,会使数学家无法专注于自己的研究。”
----陈省身
“我们欣赏数学,我们需要数学。”----陈省身

“一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对于已知材料的了解,和推广范围。”
----陈省身
“新的数学方法和概念,常常比解决数学问题本身更重要”——华罗庚
“现代高能物理到了量子物理以后,有很多根本无法做实验,在家用纸笔来算,这跟数学家想样的差不了多远,所以说数学在物理上有着不可思议的力量”——邱成桐
“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。”——华罗庚

回答3:

数学是一种精神,一种理性的精神。正是这种精神,激发、促进、鼓舞并驱使人类的思维得以运用到最完善的程度,亦正是这种精神,试图决定性地影响人类的物质、道德和社会生活;试图回答有关人类自身存在提出的问题;努力去理解和控制自然;尽力去探求和确立已经获得知识的最深刻的和最完美的内涵。 ——克莱因《西方文化中的数学》

  数学是除了语言与音乐之外,人类心灵自由创造力的主要表达方式之一,而且数学是经由理论的建构成为了解宇宙万物的媒介。因此,数学必需保持为知识,技能与文化的主要构成要素,而知识与技能是得传授给下一代,文化则得传承给下一代的。——录自德国数学家HermannWeyl语

  数学是科学的皇后,而数论是数学的皇后高斯(Gauss)音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。——克莱因

  数学的本质在於它的自由。---康扥尔(Cantor)

  在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。康扥尔(Cantor)

  没有任何问题可以向无穷那样深深的触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想,然而也没有任何其他的概念能向无穷那样需要加以阐明。——希尔伯特(Hilbert)

  数学是无穷的科学。--赫尔曼外尔

  问题是数学的心脏。--P.R.Halmos

  只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的终止或衰亡。--Hilbert

  数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。--高斯

  哲学家也要学数学,因为他必须跳出浩如烟海的万变现象而抓住真正的实质。……又因为这是使灵魂过渡到真理和永存的捷径。--柏拉图