(Ⅰ)∵f(x)=4cosxsin(x+
)?1π 6
=4cosx(
sinx+
3
2
cosx)?11 2
=
sin2x+2co
3
x?1
s
=
sin2x+cos2x
3
=2sin(2x+
),π 6
∴f(x)的最小正周期为T=
π.2π 2
(Ⅱ)∵f(A)=2sin(2A+
)=2,π 6
所以 sin(2A+
)=1,π 6
又∴∵0<A<π,所以
<2x+π 6
<π 6
.13π 6
∴2A+
=π 6
,即A=π 2
,π 6
由正弦定理
=2R,a sinA
∴R=1;
∴S△ABC=πR2=π.