设数列{An}满足An+1=An^2-nAn+1,n为正整数,当A1>=3时,证明对所有的n>=1,有

2025-03-29 03:00:19
推荐回答(1个)
回答1:

(1)用数学归纳法。
A(n+1)=An^2-nAn+1=An(An-n)+1>=An*2+1>=(n+2)*2+1=2n+5>n+1+2

(2)因为an>=n+2,所以an-n>=2
A(n+1)=An(An-n)+1>=2An+1
A(n+1)+1>=2(An+1)
1/(A(n+1)+1)<=1/(An+1)*1/2
1/(1+a1)=1/4,1/(1+a2)<=1/2*1/4
1/(1+a1) + 1/(1+a2) + ……+1/(1+an) <=1/4(1+1/2+1/4+.....+1/2^(n-1))<1/4*2=1/2
当且仅当n=1时取等号。