证明:1题,∵x∈R,1+x^2≥2x,当且仅当x=1时“=”成立,∴f(x)=x/(1+x^2)≤x/(2x)=1/2。 又,x→±∞时,f(x)→0,f(x)的值域为(0,1/2],∴f(x)有界。 2题,∵x在区间(-1,1]上,∴0<1+x<2。而当x→-1时,x+1→0,ln(1+x)→-∞,∴f(x)=2+ln(x+1)→-∞,即f(x)的值域为(-∞,2+ln2),∴f(x)无界。 供参考。
求极限