三角形面积可以用absinC/2来表示,比较条件可知
(a²+b²-c²)/4=absinC/2
又由余弦定理
cosC=(a²+b²-c²)/2ab
由上面两式可得cosC=sinC
C在0°~180°,所有C为45°
S=(a^2+b^2-c^2)/4
a^2+b^2-c^2=4S
cosC=(a^2+b^2-c^2)/2ab
cosC=4S/2ab
cosC=2S/ab
S=absinC/2
cosC=(2*absinC/2)/2
cosC=sinC
0°
解:由S=absinC/2=(a^2+b^2-c^2)/4得sinC=(a^2+b^2-c^2)/2ab =cosC,所以tanC =1,所以C=45°
S=(a^2+b^2-c^2)/4
a^2+b^2-c^2=4S
cosC=(a^2+b^2-c^2)/2ab
cosC=4S/2ab
cosC=2S/ab
S=absinC/2
cosC=(2*absinC/2)/2
cosC=sinC
0°