一道高中物理竞赛题

2024-12-04 10:31:42
推荐回答(5个)
回答1:

楼上的a基本对,但那个F=ma代的质量是M,不是(M+m1+m2)。
b的话,用两个坐标系统,一个静止不动的坐标系统O,一个和M一起动的坐标系统O'。那么r_C/O=r_O'/O+r_C/O'。可以得到a_C/O=a_O'/O+a_C/O',a_C/O为m1的加速度,a_O'/O为M的加速度,a_C/O'为m1在坐标系统O'的加速度。a_C/O可以通过受力分析得到,牛顿的,静止不动的坐标系。那a_C/O'=a_C/O-a_O'/O
第二题就用相对加速度a_C/O'算相对位移,然后把相对位移代进去求时间,楼上思路是对的,数值就不知道了。

回答2:

假设斜面有向右的加速度,则三个物体均受向左的惯性力。
对m1:m1acos30+m1gsin30-T=m1a'
N1+m1asin30=m1gcos30
对m2:T+m2acos60-m2gsin60=m2a'
N2=m2gcos60+m2asin60
对M:-N1sin30+N2sin60-T(cos60-cos30)=Ma
最终结果a=(-m1sin30+m2sin60)(m1cos30+m2cos60)g/{(m1+m2)(m1+m2-M)-(m1cos30+m2cos60)^2}=0.6m/s^2
该题最容易出错的是最后一个式子,容易漏掉T(cos60-cos30)这一项,因为左右两段绳子对滑轮的力并不是竖直向下的,而滑轮是固定在斜面上的。当然也可以先把两段绳子的力合成,然后取水平分量,结果是一样的。这题在《赛前集训》(张大同)的37页有一个类似的。

回答3:

设拉力T,分别受力分析有两物体加速度相同且m₁向下:

m₁gsin30°-T=m₁﹙a′-acos30°﹚ ①

T-m₂gsin60°=m₂﹙a′-acos60°﹚ ②

①+②得:﹙m₁cos30°+m₂cos60°﹚a=﹙m₁+m₂﹚a′-﹙m₁sin30°-m₂sin60°﹚g ③

再由动量守恒定律,有

m₁﹙a′cos30°-a﹚+m₂﹙a′cos60°-a﹚=Ma ④

由③④两式解得: ﹙M+m₁+m₂﹚﹙m₁sin30°-m₂sin60°﹚g
a′= ─────────────────────────────
﹙m₁+m₂﹚﹙ M+m₁+m₂﹚-﹙m₁cos30°+m₂cos60°﹚²

﹙m₁cos30°+m₂cos60°﹚﹙m₁sin30°-m₂sin60°﹚g
a= ──────────────────────────────
﹙m₁+m₂﹚﹙M+m₁+m₂﹚-﹙m₁cos30°+m₂cos60°﹚

最后化简超简单,带入数据,别忘了把质量全化为m₂哦!
分清加速度和分解好加速度就OK了

回答4:

答案

回答5:

(1):M的a=0m/s.......a'=(m1sin30度减去m2sin60度)/m1