设t=e^(2x),x=(lnt)/2,dx=1/(2t) dt∫dx/[1+e^(2x)]= (1/2)∫dt/[t(1+t)]= (1/2)∫[(1+t)-t]/[t(1+t)] dt= (1/2)∫[1/t - 1/(1+t)] dt= (1/2)[ln|t| - ln|1+t|] + C= (1/2)[ln|e^(2x)| - ln|1+e^(2x)] + C= x - (1/2)ln|1+e^(2x)| + C