=(1+3+5+-----+99)^2
1+3+5+----+99是一个等差数列d=2,a1=1
等差数列通项:an=a1+(n-1)d 99=1+(n-1)^2 99=1+2n-2 100=2n n=50
等差数列前n项和:Sn=na1+[n(n-1)/2]d
=50*1+(50*49/2)*50
=50+25*49*50
=(1^2+2^2+3^2+------+100^2)-(2^2+4^2+6^2+------+100^2)
=(1^2+2^2+3^2+------+100^2)-4*(1^2+2^2+3^2+------+25^2)
用平方和公式1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6代入得:
=(100*101*201)/6 - 4*25*26*51/6
=316250
25*50=1250
1/2+99/2=50
3/2+97/2=50
共25个