xy + e^y = 0 (1)
y + xy' + y'e^y = 0 (2)
y'(x + e^y) = -y
y' = - y / (x + e^y) (3)
对(2)再求导一次:
y' + y' + xy'' + y''e^y + y'e^y y' = 0
y''(x+e^y) = -y'(2+y'e^y)
y'' = -y'(2+y'e^y)/(x+e^y) (4)
将(3)式 y' 代入(4),
y''=y[2-ye^y/(x+e^y)]/(x+e^y)^2 (5)
即为所求。