过椭圆外一点求与椭圆相切的直线方程有什么简单算法,不是设k带入的那种方式。

2025-03-31 19:19:36
推荐回答(2个)
回答1:

椭圆方程x²/a²+y²/b²=1,设切点是(m,n),则过该点的切线方程是mx/a²+ny/b²=1(半代入形式)

令此切线过已知定点,借助另一方程即(m,n)在椭圆上即可求出m、n的值,不过注意会有两解。

注意:椭圆的标准方程共分两种情况:

当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);

当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);

其中a^2-c^2=b^2

推导:PF1+PF2>F1F2(P为椭圆上的点 F为焦点)

扩展资料

在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。

椭圆是封闭式圆锥截面:由锥体与平面相交的平面曲线。椭圆与其他两种形式的圆锥截面有很多相似之处:抛物线和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面平行于圆柱体的轴线。

椭圆也可以被定义为一组点,使得曲线上的每个点的距离与给定点(称为焦点)的距离与曲线上的相同点的距离的比值给定行(称为directrix)是一个常数。该比率称为椭圆的偏心率。

也可以这样定义椭圆,椭圆是点的集合,点其到两个焦点的距离的和是固定数。

椭圆在物理,天文和工程方面很常见。

参考资料百度百科- 椭圆的标准方程

回答2:

希望对你有用 望采纳
椭圆方程x²/a²+y²/b²=1,设切点是(m,n),则过该点的切线方程是mx/a²+ny/b²=1(半代入形式)
令此切线过已知定点,借助另一方程即(m,n)在椭圆上即可求出m、n的值,不过注意会有两解