一、判断:
(1)长方体有6个面,可能会有4个面面积相同。( )
(2)棱长是6分米的正方体体积与表面积一样大。( )
(3)1立方米铁的体积比1立方米的棉花体积大。 ( )
(4)体积为1立方分米的纸盒放在桌面上,纸盒所占的面积一定是1平方分米。( ) (5)正方体的棱长扩大2倍,体积扩大4倍。( )
二、应用题:
例:一个长方体,长12厘米,宽8厘米,高6厘米。
(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?
(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块? (3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?
练习
1.把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米,最小是多少?
2.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方分米?
3.把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积最少增加多少平方厘米?最多增加多少平方厘米?
4.把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米
5.一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?
6.把长5厘米、宽4厘米、高3厘米的两块相同的长方体拼成一个新长方体,有几种拼法,表面积分别是多少?
7.把两块棱长5厘米的正方体的拼成一个长方体,这个长方体的表面积是多少平方厘米?(你能用几种方法解答)
8.一个正方体的底面周长是16厘米,它的表面积是多少平方厘米,体积是多少立方厘米。
9.至少要几个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是多少平方厘米,体积是多少立方厘
10.一个长方体,如果高减少3厘米,就成为一个正方体。这时表面积比原来减少了96平方厘米。原来长方体的体积是多少立方厘米?
11.一个长2米的长方体钢材截成三段,表面积比原来增加2.4平方分米,这根钢材原来的体积是多少立方分米。
12.一个长方体,如果长减少2厘米,就成为一个正方体,这时,正方体的表面积是96平方厘米,原来长方体的体积是多少。
13.将三个棱长是4厘米的正方体拼成一个长方体,这个长方体的体积是多少立方厘米,表面积是多少平方厘米。
14.一个长方体,如果高减少3厘米,就成为一个正方体。这时表面积比原来减少了96平方厘米。原来长方体的体积是多少立方厘米。
15.一个棱长是3厘米的正方体木块,各面中心凿穿一孔面边长是1厘米的正方形柱孔,它余下的体积是多少立方厘米?