因为在面板数据和序列数据中,如果存在单位根,会产生伪回归等严重后果,所以必须对每个变量进行单位根检验,这样能够保证每个变量的平稳性,平稳变量回归才是有效的。
按照正规程序,面板数据虽然减轻了数据的非平稳性,使得变量的相关性降低,但是各变量还是有趋势、截距问题,可能还是非平稳数据,存在单位根,所以面板数据模型在回归前需检验每个变量是否存在单位根。
扩展资料:
面板数据维度的确定
在面板数据进行模型估计前,要进行面板数据的维度确定。由于面板数据既有截面数据又有时间序列,而stata不能自动识别,因此,必须使得stata得知哪一部分是截面数据,而哪一部分是时间序列。
设置面板数据维度的基本命令为:
xtset panelvar timvar [, tsoptions]
其中panelvar代表截面数据变量,timvar代表时间序列变量。
选取某一面板数据进行维度设定(该数据研究职业培训津贴对厂商废弃率的影响):
xtset fcode year
因为在面板数据和序列数据中,如果存在单位根,会产生伪回归等严重后果,所以必须对每个变量进行单位根检验,这样能够保证每个变量的平稳性,平稳变量回归才是有效的。
按照正规程序,面板数据虽然减轻了数据的非平稳性,使得变量的相关性降低,但是各变量还是有趋势、截距问题,可能还是非平稳数据,存在单位根,所以面板数据模型在回归前需检验每个变量是否存在单位根。
扩展资料:
1、存在单位根的后果:自回归系数估计量不服从渐进正态分布,t检验失效;两个相互独立的单位根可能出现伪相关或者伪回归
2、经济数据中很容易出现单位根:一般经济变量像GDP、消费指数等等,都是存在时间趋势,所以一般在建模前都需要做单位根检验,消除不平稳,保证模型有效。
3、单位根检验的一般方法:ADF检验,全称是 Augmented Dickey-Fuller test,顾名思义,ADF是 Dickey-Fuller检验的增广形式。DF检验只能应用于一阶情况,当序列存在高阶的滞后相关时,可以使用ADF检验,所以说ADF是对DF检验的扩展。ADF检验的原理就是判断序列是否存在单位根:如果序列平稳,就不存在单位根;否则,就会存在单位根。所以,ADF检验的 H0 假设就是存在单位根,如果得到的显著性检验统计量小于三个置信度(10%,5%,1%),则对应有(90%,95,99%)的把握来拒绝原假设。
参考资料来源:百度百科-单位根检验
因为面板数据虽然减轻了数据的非平稳,使得变量的相关性降低,但是各变量还是有趋势、截距问题,可能还是非平稳数据,存在单位根。这样回归会造成伪回归。
是检验每个变量的趋势,或是走势,但是是对每个变量做单位根检验。一般经济变量如GDP cpi等等吧,都是存在时间趋势,或是有截距项的。都是要做单位根检验。
使用eviews里的pool,或者stata各版本 都能得到的!