1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
s1=1/3
s2=2/5
s3=3/7
s4=4/9
Sn=n/(2n+1)
(裂项求和)
Sn=1/2[1-1/(2n+1)]=n/(2n+1)
an=1/(2n-1)(2n+1)
S1=a1=1/3
S2=a1+a2=1/3+1/15=2/5
S3=a1+a2+a3=2/5+1/35=3/7
S4=a1+a2+a3+a4=3/7+1/63=4/9
Sn=n/(2n+1)
解:(2)Sn=1/(1*3)+1/(3*5)+...+1/[(2n-1)*(2n+1)]
裂项得Sn=1/2[(1/1-1/3)+(1/3-1/5)....+1/(2n-1)-1/(2n+1)]
=1/2[1-1/2n+1]
=1/2-1/4n+2
易得S1,S2,S3,S4分别为1/3.2/5,3/7,4/9