令√(1-x)=t1-x=t²x=1-t²dx=-2tdtx=0,t=1;x=1,t=0所以原式=∫(1,0)(1-t²)t*(-2t)dt=2∫(0,1)(t²-t^4)dt=2(t³/3-t^5/5)|(0,1)=2(1/3-1/5)=4/15