方差怎么求,举个例子?

2024-11-22 10:28:34
推荐回答(5个)
回答1:

方差=平方的均值减去均值的平方。

例:

有 1、2、3、4、5这组样本,其平均数为(1+2+3+4+5)/5=3,而方差是各个数据分别与其和的平均数之差的平方的和的平均数,则为:

[(1-3)^2+(2-3)^2+(3-3)^2+(4-3)^2+(5-3)^2]/5=2,方差为2。

方差的公式:

方差是实际值与期望值之差平方的平均值,而标准差是方差算术平方根。

方差是各个数据与平均数之差的平方的和的平均数,即

其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s2就表示方差。

方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差,记作S2。

回答2:

方差:是实际值与期望值之差平方的平均值,而标准差是方差平方根。
方差求法:1,先求出一组数据的平均数;
2,代入方差公式进行计算。(用每一个具体的数据减去平均数得到的差的平方的和去除以数据的总个数)。

举例:设这组数据:x1、x2、x3、……、xn的平均数是M,先求出M,然后代入方差的公式就可以了:
s²=[(x1-M)²+(x2-M)²+(x3-M)²+……+(xn-M)²]÷n

希望帮到你 望采纳 谢谢 加油

回答3:

方差=平方的均值减去均值的平方。

例:

有 1、2、3、4、5这组样本,其平均数为(1+2+3+4+5)/5=3,而方差是各个数据分别与其和的平均数之差的平方的和的平均数,则为:

[(1-3)^2+(2-3)^2+(3-3)^2+(4-3)^2+(5-3)^2]/5=2,方差为2。

方差的公式:

方差是实际值与期望值之差平方的平均值,而标准差是方差算术平方根。

方差是各个数据与平均数之差的平方的和的平均数,即

其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s2就表示方差。

方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差,记作S2。

回答4:

各个数据与平均数的差的平方和,再除以数据的个数即是方差

a=[(x1-x)²+(x2-x)²+...+(xn-x)²]/n
a是方差,x是平均数,n是数据的个数

回答5:

先求平均数,再把平均数与各数的差平方后求平方的平均数就是方差,有时将方差开根号后认为是方差,比如4,5,6,平均数5与各数差的平方是1,0,1,方差为2,概率统计好像要求开根号,具体我有些记混了,希望有用