利用迫敛汪升性困橡老定理,如磨
就可以求出极限为0,
具体解答
如图所示,
lim(n->∞坦岁) [ 1/n^2 + 1/(n+1)^2 +....+1/(n+n)^2]
(n+1)/则信拿孙搭n^2 ≤1/n^2 + 1/(n+1)^2 +....+1/(n+n)^2≤ (n+1)/(n+n)^2
lim(n->∞) (n+1)/n^2 = lim(n->∞) (n+1)/(n+n)^2 =0
=>
lim(n->∞) [ 1/n^2 + 1/(n+1)^2 +....+1/(n+n)^2] =0
详细过程如图…磨行…瞎弊哗卜氏所示