关于x的分式方程(3-2x)⼀(x-3)+ (2+mx)⼀(3-x)=-1无解,求m的取值

2025-05-05 04:51:41
推荐回答(2个)
回答1:

解:
原方程为:
(3-2x)/(x-3) - (2+mx)/(x-3) + (x-3)/(x-3) = 0
(3-2x-2-mx+x-3)/(x-3) = 0
[(-m-1)x-2]/(x-3) = 0
讨论:
(1)
当该式分子为不等于零的常数时,原方程无解,即:
-m-1=0
m=-1
(2)
当分子是分母的非零常数项倍数时,原方程无解,设此常数项为C(C≠0),即:
[(-m-1)x-2]/(x-3) = C
则:
(-m-1)[x-2/(-m-1)] = C(x-3)
2/(-m-1) = 3
m=-5/3
综上:m = -1 或者 -5/3 时,原方程无解

回答2:

(3-2x)/(x-3)+ (2+mx)/(3-x)=-1
3-2x-(2+mx)=3-x
3-2x-2-mx=3-x
x+mx=-2
x(1+m)=-2
x=3的时候无解
所以
3×(1+m)=-2
3+3m=-2
3m=-5
m=-5/3