设函数f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)(Ⅰ)

2024-11-29 16:43:40
推荐回答(1个)
回答1:



(Ⅰ)x,y∈R,f(x+y)=f(x)?f(y),x<0时,f(x)>1
令x=-1,y=0则f(-1)=f(-1)f(0)∵f(-1)>1
∴f(0)=1
若x>0,则f(x-x)=f(0)=f(x)f(-x)
f(x)=
1
f(-x)
∈(0,1)

故x∈Rf(x)>0
任取x 1 <x 2 f(x 2 )=f(x 1 +x 2 -x 1 )=f(x 1 )f(x 2 -x 1
∵x 2 -x 1 >0∴0<f(x 2 -x 1 )<1
∴f(x 2 )<f(x 1
故f(x)在R上减函数

(Ⅱ)① a 1 =f(0)=1,f( a n+1 )=
1
f(-2- a n )
=f(2+ a n )

由f(x)单调性知,a n+1 =a n +2故{a n }等差数列
∴a n =2n-1
b n =
1
a n+1
+
1
a n+2
++
1
a 2n
,则 b n+1 =
1
a n+2
+
1
a n+3
++
1
a 2n+2
b n+1 - b n =
1
a 2n+1
+
1
a 2n+2
-
1
a n+1
=
1
4n+1
+
1
4n+3
-
1
2n+1

=
1
(4n+1)(4n+3)(2n+1)
>0,{ b n }
是递增数列
当n≥2时, ( b n ) min = b 2 =
1
a 3
+
1
a 4
=
1
5
+
1
7
=
12
35

12
35
12
35
(lo g a+1 x-lo g a x+1)

即log a+1 x-log a x+1<1?log a+1 x<log a x
而a>1,
∴x>1
故x的取值范围:(1,+∞)