证明:(I)∠BCA=90°得BC⊥AC,
因为A1D⊥底ABC,所以A1D⊥BC,
因为A1D∩AC=D,所以BC⊥面A1AC,
所以BC⊥AC1,
因为BA1⊥AC1,BA1∩BC=B,
所以AC1⊥底A1BC
(II)由(I)知AC1⊥A1C,ACC1A1为菱形,
∴∠A1AC=60°AA1=AC=A1C=2,
又CE=EA,故△A1AE≌△A1CE.
作AF⊥A1E于F,连CF,则CF⊥A1E,
故∠AFC为二面角A-A1E-C的平面角,
∵A1E=
=2,AF=CF=
A1D2+DE2
=AE?
AA12?(
)2
AE 2
A1E
7
4
∴cos∠AFC=
=?AF2+CF2?AC2
2AF?CF
.1 7
故二面角B-A1E-C余弦值的大小
.1 7