已知双曲线 x 2 3 - y 2 =1 的左右焦点分别为F 1 F 2 ,过F 1 且倾斜角为60°的直线l

2025-05-05 22:00:50
推荐回答(1个)
回答1:

x 2
3
-y 2 =1的右焦点为F 2 (2,0),左焦点为F 1 (-2,0),
∴过F 1 且倾斜角为60°的直线l方程为:y=
3
(x+2),
∴由
x 2
3
-y 2 =1
y=
3
(x+2)
消去y得:8x 2 +36x+39=0,
设M(x 1 ,y 1 ),N(x 2 ,y 2 ),
则x 1 ,x 2 是方程8x 2 +36x+39=0的两根.
∴x 1 +x 2 =-
9
2
,x 1 x 2 =
39
8

∴|MN|=
1 +(
3
)
2
?
(x 1 +x 2 ) 2 - 4x 1 x 2

=2
81
4
-4×
39
8
=
3

∵|MF 2 |-|MF 1 |=2
3

|NF 2 |-|NF 1 |=2
3

∴|MF 2 |+|NF 2 |=4
3
+|MN|=5
3

∴△MNF 2 的周长为|MF 2 |+|NF 2 |+|MN|=6
3

设F 2 (2,0)到直线MN
3
x-y+2
3
=0的距离为d,
则d=
|
3
×2+2
3
|
(
3
)
2
+(-1) 2
=2
3

S △M NF 2 =
1
2
|MN|?d=
1
2
×