设y'=p,则y''=dp/dx=dp/dy*dy/dx=pdp/dy方程化为pdp/dy=(3/2)y²2pdp=3y²dyp²=y³+C1由x=0时,y=1,y'=1,即p=1,代入上式得:C1=0则:p²=y³,则p=y^(3/2)即:dy/dx=y^(3/2),即y^(-3/2)dy=dx,两边积分得:-2y^(-1/2)=x+C2将x=0,y=1代入得:C2=-2,则-2y^(-1/2)=x-2得:y^(-1/2)=(2-x)/2,即y=4/(2-x)²