化简:1⼀(1+√2)+1⼀(√2+√3)+1⼀(√3+√4)+1⼀(√4+√5)+1⼀(√5+√6)+1⼀(√6+√7)1⼀(√7+√8)+1⼀(√8+√9)

2025-04-02 10:14:41
推荐回答(2个)
回答1:

1-√2/(1-√2)(1+√2)+ (√2-√3)/(√2-√3)(√2+√3)+....+(√8-√9)/(√8+√9)(√8-√9)
=-(1-√2)- (√2-√3)-(√3-√4)-....-(√8-√9)
=-1+√9
=2

回答2:

∵1/[√n+√﹙n+1﹚]=[√﹙n+1﹚+√n][√﹙n+1﹚-√n]/[√n+√﹙n+1﹚]=√﹙n+1﹚-√n
∴√2-1+√3-√2+。。。+√9-√8=√9-1=2